Betti numbers of random manifolds

نویسندگان

  • Michael Farber
  • Thomas Kappeler
چکیده

We study mathematical expectations of Betti numbers of configuration spaces of planar linkages, viewing the lengths of the bars of the linkage as random variables. Our main result gives an explicit asymptotic formulae for these mathematical expectations for two distinct probability measures describing the statistics of the length vectors when the number of links tends to infinity. In the proof we use a combination of geometric and analytic tools. The average Betti numbers are expressed in terms of volumes of intersections of a simplex with certain half-spaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Betti numbers of random real hypersurfaces and determinants of random symmetric matrices

We asymptotically estimate from above the expected Betti numbers of random real hypersurfaces in smooth real projective manifolds. Our upper bounds grow as the square root of the degree of the hypersurfaces as the latter grows to infinity, with a coefficient involving the Kählerian volume of the real locus of the manifold as well as the expected determinant of random real symmetric matrices of ...

متن کامل

“L-invariants of regular coverings of compact manifolds and CW -complexes”

0. Introduction 1. L-Betti numbers for CW -complexes of finite type 2. Basic conjectures 3. Low-dimensional manifolds 4. Aspherical manifolds and amenability 5. Approximating L-Betti numbers by ordinary Betti numbers 6. L-Betti numbers and groups 7. Kähler hyperbolic manifolds 8. Novikov-Shubin invariants 9. L-torsion 10. Algebraic dimension theory of finite von Neumann algebras 11. The zero-in...

متن کامل

Some remarks on Betti numbers of random polygon spaces

Polygon spaces such as M = {(u1, . . . , un) ∈ S1 × . . . S1,∑ni=1 liui = 0}/SO(2), or the three-dimensional analogs N play an important rôle in geometry and topology, and are also of interest in robotics where the li model the lengths of robot arms. When n is large, one can assume that each li is a positive real valued random variable, leading to a randommanifold. The complexity of such manifo...

متن کامل

L 2 - Topological Invariants of 3 - manifolds by John Lott and Wolfgang Lück

We give results on the L2-Betti numbers and Novikov-Shubin invariants of compact manifolds, especially 3-manifolds. We first study the Betti numbers and Novikov-Shubin invariants of a chain complex of Hilbert modules over a finite von Neumann algebra. We establish inequalities among the Novikov-Shubin invariants of the terms in a short exact sequence of chain complexes. Our algebraic results, a...

متن کامل

Betti numbers of a class of barely G2 manifolds

We calculate explicitly the Betti numbers of a class of barely G2 manifolds that is, G2 manifolds that are realised as a product of a Calabi-Yau manifold and a circle, modulo an involution. The particular class which we consider are those spaces where the CalabiYau manifolds are complete intersections of hypersurfaces in products of complex projective spaces and the involutions are free acting.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006